Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory
نویسندگان
چکیده
منابع مشابه
Nonlinear microrheology of dense colloidal suspensions: A mode-coupling theory
A mode-coupling theory for the motion of a strongly forced probe particle in a dense colloidal suspension is presented. Starting point is the Smoluchowski equation forN bath and a single probe particle. The probe performs Brownian motion under the influence of a strong constant and uniform external forceFex. It is immersed in a dense homogeneous bath of (different) particles also performing Bro...
متن کاملActive and nonlinear microrheology in dense colloidal suspensions.
We present a first-principles theory for the active nonlinear microrheology of colloidal model system; for a constant external force on a spherical probe particle embedded in a dense host dispersion, neglecting hydrodynamic interactions, we derive an exact expression for the friction. Within mode-coupling theory, we discuss the threshold external force needed to delocalize the probe from a host...
متن کاملTheory of nonlinear rheology and yielding of dense colloidal suspensions.
A first-principles approach to the nonlinear flow of dense suspensions is presented which captures shear thinning of colloidal fluids and dynamical yielding of colloidal glasses. The advection of density fluctuations plays a central role, suppressing the caging of particles and speeding up structural relaxation. A mode coupling approach is developed to explore these effects.
متن کاملAsymptotic analysis of mode-coupling theory of active nonlinear microrheology.
We discuss a schematic model of mode-coupling theory for force-driven active nonlinear microrheology, where a single probe particle is pulled by a constant external force through a dense host medium. The model exhibits both a glass transition for the host and a force-induced delocalization transition, where an initially localized probe inside the glassy host attains a nonvanishing steady-state ...
متن کاملNonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
Using a combination of theory, experiment, and simulation we investigate the nonlinear response of dense colloidal suspensions to large amplitude oscillatory shear flow. The time-dependent stress response is calculated using a recently developed schematic mode-coupling-type theory describing colloidal suspensions under externally applied flow. For finite strain amplitudes the theory generates a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2013
ISSN: 1539-3755,1550-2376
DOI: 10.1103/physreve.87.032304